

INDION® RESINS

The Preferred Choice

Our INDION range is backed by sustained focus on customer needs, intensive product and application R&D, sound technical support and wide application knowhow. Add to this continuous innovation, worldclass quality, state of art ISO 9001 & 14001 certified facilities, an FDA approved pharmaceutical grade resin manufacturing unit... And you get the perfect recipe that makes INDION the preferred choice across sectors for more than 45 years.

Wide Range. Extensive Applications.

A complete range of cation & anion resins for water and waste water treatment as well as a host of speciality applications- pharmaceutical excipients, catalysts, nuclear grade resins, chelating resins for brine softening and heavy metal removal, adsorbent grade resins, reins for removal of colour, odour, organics, nitrate & tannin, resins for purification of bio-diesel, sugar, food & beverages and many more...

- Refinery & Petrochemical
- Steel, Power & Paper
- Food & Beverages
- Pharmaceuticals, Bio-technology & Electronics
- Textiles, Sugar, Auto & Mini-steel
- Cement & Chemicals

INDION[°] Ion Exchange Resins

Properties and Applications - Summarised Data

for enquiries please contact SGAQUA at info@sgaqua.co.uk

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature [°] C	Total Exchange Capacity meq/ml	Reversible Swelling %	
	INDION (Controlled Parti	strial Water Tr cle Size Ion E		s (CPS Resins)						
SBA	Gel	GS 3000 (Type 1)	Styrene DVB	-N+ R3	CI [_]	0.50 – 0.65 (effective size)	48 - 58	60 (OH)	1.3	Cl ⁻ to OH ⁻ 25 – 30	Deminera Condensa
		2250 Na	Styrene DVB	-SO3_	Na+	0.50 – 0.65 (effective size)	43 - 50	120	2.0	Na+ to H+ 8 approx.	Premium g
SAC	Gel	2250 H	Styrene DVB	-SO3_	H⁺	0.50 – 0.65 (effective size)	49 – 55	120	1.8	Na ⁺ to H ⁺ 8 approx.	Premium g
	Anion Exchange		Nater Treatme	nt							
		FF-IP (Type 1)	Crosslinked Polystyrene	-N+ R3	CI ⁻	0.3 – 1.2	47 – 55	60 (OH ⁻)	1.2	Cl ⁻ to OH ⁻ 10 – 15	Demineral
	lsoporous	FF–IP (MB)	Crosslinked Polystyrene	-N+ R3	CI-	0.3 – 1.2	47 – 55	60 (OH)	1.2	Cl ⁻ to OH ⁻ 10 – 15	Used in m
		N–IP (Type 2)	Crosslinked Polystyrene	-N+ R3	CI-	0.3 – 1.2	45 - 53	40 (OH)	1.2	Cl ⁻ to OH ⁻ 10 – 15	Demineral
		GS 300 (Type 1)	Styrene DVB	-N+ R3	CI ⁻	0.3 – 1.2	48 - 58	60 (OH)	1.3	Cl ⁻ to OH ⁻ 25 – 30	Demineral Condensa
SBA	Gel	GS 400 (Type 2)	Styrene DVB	$-N^+ R_3$	CI-	0.3 – 1.2	45 – 51	40 (OH)	1.2	Cl ⁻ to OH ⁻ 10 – 15	Demineral
		810 (Type 1)	Styrene DVB	$-N^+ R_3$	CI ⁻	0.3 – 1.2	56 - 63	60 (OH)	1.0	Cl ⁻ to OH ⁻ 15 - 20	Demineral
	Macroporous	830 (Type 1)	Styrene DVB	$-N^+ R_3$	CI [_]	0.3 -1.2	57 – 66	80 (CI)	0.95	Cl ⁻ to OH ⁻ 7 – 17	Removal o
		820 (Type 2)	Styrene DVB	$-N^+ R_3$	CI [_]	0.3 – 1.2	54 - 61	40 (OH)	1.0	Cl ⁻ to OH ⁻ 10 – 15	Demineral
WBA	Macroporous	850	Styrene DVB	$-NR_2$ $-N^+ R_3$	Free base	0.3 – 1.2	47 – 55 (Cl [–])	60	1.5	FB to hydrochloride 25 max	Removal o
	Cation Exchang	e Resins			1	1			1		
		220 Na	Styrene DVB	- SO ₃ -	Na+	0.3 – 1.2	50 – 55	140	1.8	Na+to H+ 8 approx.	Standard g
		225 Na	Styrene DVB	- \$O ₃ ⁻	Na+	0.3 – 1.2	43 – 50	140	2.0	Na+ to H+ 6 – 10	Premium g
SAC	Gel	225 H	Styrene DVB	- SO ₃ ⁻	H+	0.3 – 1.2	49 – 55	120	1.8	Na+ to H+ 8 approx.	Premium g
		325 H (MB)	Styrene DVB	- SO ₃ ⁻	H⁺	0.3 – 1.2	47 – 54	120	1.9	Na+ to H+ 8 approx.	Premium g
		222 Na	Styrene DVB	- SO ₃ ⁻	Na+	0.3 – 1.2	47 – 53	140	1.92	Na+to H+ 8 approx.	Premium g

*meq/dry g

SAC: Strong Acid Cation, SBA: Strong Base Anion, WBA: Weak Base Anion, WAC: Weak Acid Cation, SPL : Speciality

Applications

ralisation in co-current and countercurrent mode. sate polishing & caprolactum purification.

grade cation exchange resin for water softening.

grade cation exchange resin for demineralisation.

ralisation in co-current and countercurrent mode.

mixed bed.

ralisation in co-current and countercurrent mode.

ralisation in co-current and countercurrent mode. sate polishing & caprolactum purification.

ralisation in co-current and countercurrent mode.

ralisation in co-current and countercurrent mode.

of organics & colour from water.

ralisation in co-current and countercurrent mode.

of strong acids from water.

I grade cation exchange resin for water softening.

grade cation exchange resin for water softening.

grade cation exchange resin for demineralisation.

grade cation exchange resin for use in mixed bed.

grade cation exchange resin for water softening.

INDION[°] Ion Exchange Resins

Properties and Applications - Summarised Data

for enquiries please contact SGAQUA at info@sgaqua.co.uk

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature [°] C	Total Exchange Capacity meq/ml	Reversible Swelling %	
		Industrial V	Vater Treatme	ent							
(Cation Exchange R	Resins									
		225 Na F	Styrene DVB	-SO3_	Nα+	0.3 – 1.2	43 – 50	140	2.0	Na+ to H+ 8 approx.	In the treat water used to NSF/ANS from WQA
	Cal	222 Na F	Styrene DVB	- SO ₃ ⁻	Na+	0.3 – 1.2	47 – 53	140	1.92	Na ⁺ to H ⁺ 8 approx.	In the treat water used
SAC	Gel	222 Na BL	Styrene DVB	- SO3-	Na+	0.3 – 1.2	46 – 51	140	1.9	-	Solvent free potable wa This produc with GOLD
		303	Styrene DVB	- SO ₃ ⁻	H+	0.3 – 1.2	55 – 60	120	1.8 (Na+)	Na ⁺ to H ⁺ 6 approx	Colour indi of exhaustic
	Macroporous-	730	Styrene DVB	- SO ₃ ⁻	H+	0.3 – 1.2	54 – 57	120	1.7 (Na+)	-	Recovery of
	SPL	790	Styrene DVB	- SO ₃ ⁻	H+	0.3 – 1.2	51 – 55	120	1.9 (Na+)	Na+ to H+ 2 - 6	Deminerali condensate
	Gel	236	Crosslinked Polyacrylic	- COO ⁻	H+	0.3 – 1.2	46 - 54	120	4.0	H+ to Na+ 80 – 120	Removal of
WAC	Microporous	266	Crosslinked Polyacrylic	- COO ⁻	H+	0.3 – 1.2	46 – 54	120	4.2	H+ to Na+ 65 max	Removal of
	Macroporous	662	Methacrylic DVB	- COO ⁻	H⁺	0.3 – 1.2	44 – 50	100	3.8	H+ to Na+ 70 max	Removal of
	Mixed Bed Resins	5							-		
		MB 6 SR	Styrene DVB	- SO ₃ - N ⁺ R ₃	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	Super-rege ultrapure w
		MB – 11	Styrene DVB	- SO ₃ - N ⁺ R ₃	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	1:1 volume produce hig
		MB – 12	Styrene DVB	- SO ₃ - N ⁺ R ₃	H⁺ OH [–]	0.3 – 1.2	-	60	-	-	1:2 stoichic and anion i water.
		MB – 115	Styrene DVB	- SO ₃ - N ⁺ R ₃	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	40:60 volu purity demi
		RPI	Styrene DVB	- SO ₃ - N ⁺ R ₃	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	Non-regen water is rec
I	Fluoride Remova	l Resin				1	1	1	1		
	SPL	FR 10	Styrene/ DVB	NA	-	0.3 – 1.2	46 – 50	80	-	-	Removal of

*meq/dry g

SAC: Strong Acid Cation, SBA: Strong Base Anion, WBA: Weak Base Anion, WAC: Weak Acid Cation, SPL : Speciality

Applications

atment of foodstuffs, beverages, potable water and ed in the processing of food.This product conforms NSI standard 61 & is certified with GOLD SEAL

atment of foodstuffs, beverages, potable water and ed in the processing of food.

ree cation – in the treatment of foodstuffs, beverages, vater and water used in the processing of food. luct conforms to NSF/ANSI standard 61 & is certified LD SEAL from WQA.

dicating resin – Colour changes at the time stion.

of metals from aqueous and non-aqueous streams.

alisation in co-current, countercurrent mode and ate water treatment.

of alkaline hardness from water.

of alkaline hardness from water.

of alkaline hardness from water.

generated mixture of cation and anion for producing water.

ne ratio of cation in H⁺ and anion in OH⁻ to high purity demineralised water.

niometrically equivalent volume ratio of cation in H⁺ n in OH⁻ to produce high purity demineralised

lume ratio of cation and anion to produce high mineralised water.

enerable mixed bed application where highest quality equired. Colour changes at the time of exhaustion.

of fluoride from potable water.

INDION[®] Ion Exchange Resins

Properties and Applications - Summarised Data

for enquiries please contact SGAQUA at info@sgaqua.co.uk

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
		Potable W	ater Treatmen	t							
P	olyiodide Resin										
	SPL	SRCD I	Crosslinked Polymer impregnated with iodine	- N+ R3	l ₃	0.3 – 1.2	-	15 – 35	-	-	Disinfection
Α	rsenic and Iron I	Removal Resin									
	SPL	ASM	Crosslinked Polystyrene	-	-	0.3 – 1.2	47 – 54	60	0.5 - 2.0 g As/l	-	Removal o
	JEL	ISR	Crosslinked Polystyrene	-	-	0.3 – 1.2	46 - 54	40	-	-	Removal o
C	Cation Exchange	Resins		•				•		•	
SAC	Gel	225 NaF	Styrene DVB	- SO ₃ -	Na+	0.3 – 1.2	43 – 50	140	2.0	Na+ to H+ 8 – 10	High purity and food s 61 & is cer
A	nion Exchange R	esins		,				•			
SBA	Macroporous	NSSR (Type 1)	Styrene DVB	$-N^+ R_3$	CI ⁻	0.3 – 1.2	45 – 55	100 (CI [_])	0.9	Cl ⁻ to NO ₃ ⁻ Negligible	Selective re conforms t SEAL from
		Nuclear	Grade Resins								
C	Cation Exchange	Resins									
	Gel	223 H NG	Styrene DVB	-\$O ₃ ⁻	H+	0.3 – 1.2	47 – 54	120	1.9	-	High purity in nuclear
SAC		223 Li	Styrene DVB	-SO ₃ ⁻	Li+	0.3 – 1.2	47 – 53	120	1.9	-	High purity nuclear po
A	nion Exchange R	lesins						·			
		ARU 104	Crosslinked Polystyrene	N^+R_3	CI	0.3 – 1.2	40 - 44	80	1.6	-	Recovery o
BA	Gel	GS 300 NG	Styrene DVB	$-N^+R_3$	OH-	0.3 – 1.2	60 max	60	1.1	-	High streng nuclear po
	-	GS 80	Crosslinked Polystyrene	$-N^+R_3$	- SO ₃ -	0.3 – 1.2	47 – 55	-	0.8	-	Oxygen sc
N	Nixed Bed Resins							•			
		CAM – 14	Styrene DVB	-SO3 ⁻ -N+R3	H⁺ OH [−]	0.3 – 1.2	-	60	-	-	1:4 volume purity alka
	Mixed Resins -		Styrene	-SO3_	Li+						1:9 volume

* meq/dry g

SAC: Strong Acid Cation, SBA: Strong Base Anion, WBA: Weak Base Anion, WAC: Weak Acid Cation, SPL : Speciality

Applications

tion of potable water.

of Arsenic from potable water.

of dissolved iron from water.

rity food grade resin for treatment of potable water d stuff. This product conforms to NSF/ANSI standard certified with GOLD SEAL from WQA.

e removal of nitrates from water. This product ns to NSF/ANSI standard 61 & is certified with GOLD om WQA.

urity ion exchange resin (in hydrogen form) for use ar power plants.

rity ion exchange resin (in lithium form) for use in power plants.

of uranium from leach liquors.

ength strong base anion resin (Type I) for use in power plants.

scavenging.

ume mixture of cation and anion to produce high Ikaline water for use in nuclear power plants. ume mixture of cation and anion. Used in nuclear plants.

INDION[®] Ion Exchange Resins

Properties and Applications - Summarised Data

for enquiries please contact SGAQUA at info@sgaqua.co.uk

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
		Catalyst	Grade Resins								
(Cation Exchange R	esins									
		140	Styrene DVB	- SO3-	H+	0.42 - 1.2	<1	150	4.8*	-	Catalyst fo
SAC	Macroporous	130	Styrene DVB	- SO ₃ ⁻	H+	0.42 - 1.2	<1	150	4.8*	-	Catalyst gr
SAC		190	Styrene DVB	- SO ₃ -	H+	0.42 - 1.2	<1	150	4.7*	-	Premium co esterificatio
-	Gel	770	Styrene DVB	- SO ₃ ⁻	H+	0.3 – 1.2	63 – 66	120	1.4	-	Catalyst for hydration &
ļ	Anion Exchange I	Resins		•		1		•	1		
WBA	Macroporous	860	Styrene DVB	$-NR_2$ $-N^+R_3$	Free base	0.3 – 1.2	52 – 56 (CI [–])	60	1.4	FB to hydrochloride 25 max	As catalyst
		Hydro	metallurgy			•	•	•	•	•	
(Chelating Resins										
		MSR	Styrene DVB	Thiol	H+	0.3 – 1.2	38 – 43	60	3.6*	-	Selective a effluents.
		TCR	Styrene DVB	Thio-Uronium	H+	0.3 – 1.2	41 – 47	80	1.6	-	Selective re
		BSR	Styrene DVB	Amino Phosphonic	Na+	0.42 - 1.2	60 – 70	80	2.0 (H+)	H ⁺ to Na ⁺ <45 H ⁺ to Ca ⁺⁺ <20	Decalcifica
		SIR	Styrene DVB	Iminodiacetic	Na+	0.3 – 1.2	52 - 58	90	0.9	-	Extraction of from variou
Ċ	Cation Exchange R	esins		•		1	1	•	1		
		790	Styrene DVB	-SO ₃ ⁻	H+	0.3 – 1.2	51 – 55	120	1.9 (Na+)	Na+ to H+ 2 – 6	Recovery o
SAC	Macroporous	730	Styrene DVB	-SO ₃ ⁻	H+	0.3 – 1.2	54 – 57	120	1.7 (Na+)	-	Recovery o
		740	Styrene DVB	-SO3_	H+	0.3 – 1.2	64 - 68	120	1.3 (Na+)	-	Recovery o
WAC	Gel	236	Crosslinked Polyacrylic	- COO ⁻	H+	0.3 – 1.2	46 - 54	120	4.0	H+ to Na+ 80 – 120	Recovery o

*meq/dry g

SAC: Strong Acid Cation, SBA: Strong Base Anion, WBA: Weak Base Anion, WAC: Weak Acid Cation, SPL : Speciality

Applications

for organic reactions like esterification etc.

grade resin for esterification and alkylation reactions.

n catalyst for specialised applications such as ation, alkylation etc.

for manufacture of butyl acetate, ethylacetate, olefin n & bisphenol A.

yst in aldolization reactions.

e adsorption of bivalent mercury from industrial

recovery of mercury and precious metals.

ication of secondary brine in chloralkali industry.

on and recovery of metals, removal of heavy metals rious organic or inorganic chemical products.

of metals from aqueous and non-aqueous streams.

INDION[°] Ion Exchange Resins Properties and Applications - Summarised Data

for enquiries please contact SGAQUA at info@sgaqua.co.uk

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml	Reversible Swelling %	
			rocess Applicati	on							
	Anion Exchange	Resins									
SBA	Macroporous	830 S (Type 1)	Styrene DVB	$-N^+ R_3$	CI [_]	0.3 - 1.2	57 – 66	80 (CI [−])	0.95	CI ⁻ to OH ⁻ 7 – 17	Removal o streams. T is certified
		930 A (Type 1)	Crosslinked Polyacrylic	$-N^+ R_3$	CI ⁻	0.3 – 1.2	65 – 72	80 (CI)	0.8	Cl ⁻ to OH ⁻ 10 – 15	Removal of I
	Macroporous	860 S	Styrene DVB	$-N^{+} R_{2} -N^{+} R_{3}$	Free base	0.3 – 1.2	50 – 58 (CI [–])	60	1.3	FB to hydrochloride 25 max	Weak base treatment o glucose, de
WBA		870	Styrene DVB	$-N^+ R_2$	Free base	0.3 – 1.2	47 – 55 (Cl [–])	60	0.95	FB to hydrochloride 25 max	Deacidifica
(Cation Exchange	Resins				•	•			•	
	Macroporous	790	Styrene DVB	-SO3_	H⁺	0.3 – 1.2	51 – 55	120	1.9	Na+ to H+ 2 – 6	Special gro higher oxic heavy mete
SAC		525	Styrene DVB	-SO3 ⁻	H⁺	0.3 – 1.2	44 - 49	120	1.95	Na+ to H+ 6 – 9	Special gro for mixed b
	Gel	652	Methaacrylic acid DVB	C00-	H⁺	0.3 – 1.2	47 – 55	100	3.5	H ⁺ to Na ⁺ 75 min	Ideal for th temporary
I	Mixed Bed Resins	5	•								
		GMW 11 (GVI)	Crosslinked Polystyrene	-SO ₃ -N ⁺ R ₂	H⁺ OH [−]	0.3 - 1.2	-	60	-	-	Specially d application

* meq/dry g

SAC: Strong Acid Cation, SBA: Strong Base Anion, WBA: Weak Base Anion, WAC: Weak Acid Cation, SPL : Speciality

Applications

l of colour bodies from sugar syrup and other process This product conforms to NSF/ANSI standard 61 & ed with GOLD SEAL from WQA.

of high level of colour bodies from sugar syrup.

ase anion resin with high osmotic stability for nt of non-aqueous solution such as deashing of dextrose, sorbitol, gelatin & purification of MSG.

fication of process streams.

grade cation exchanger for applications demanding exidation stability such as gelatin purification, netal removal etc.

grade cation exchanger for use in layered bed and d bed condensate polishing.

the uptake of toxic undesirable heavy metals and ry hardness from process liquor and industrial waters.

developed mix of resins for use in electroplating ions. Colour changes at the time of exhaustion.

INDION° Ion Exchange Resins

Properties and Applications - Summarised Data

for enquiries please contact SGAQUA at info@sgaqua.co.uk

Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature [°] C	Total Exchange Capacity meq/ml	Reversible Swelling %	
	Pharmaceut	ical Grade Res	ins							
	204	Crosslinked Polyacrylic	- COO ⁻	H+	< 0.15	<u><</u> 5	-	10.0*	-	Taste mask Roxithromy
	214	Crosslinked Polyacrylic	- COO ⁻	H+	< 0.15	<u><</u> 5	-	10.0*	-	Taste mas
	224	Styrene DVB	-SO3_	H+	0.2 - 1.2	<u><</u> 3	-	4.8*	-	Sustained
	234	Crosslinked Polyacrylic	- COO ⁻	K+	< 0.15	<u><</u> 10	-	-	-	Taste mask Chloroquii
	234 S	Crosslinked Polyacrylic	- COO ⁻	K+	< 0.075	<u><</u> 10	-	-	-	Taste mask
	244	Styrene DVB	-SO3_	H+	< 0.15	<u><</u> 10	-	4.5*	-	Sustained
	254	Styrene DVB	-SO3_	Na+	< 0.15	<u><</u> 10	-	-	-	Sustained
SPL	264	Crosslinked Polyacrylic	-COO ⁻	H⁺	< 0.15	<u><</u> 5	-	10.0*	-	Stabilisatic
	284	Styrene DVB	-SO3_	Na+	0.3- 1.2	<u><</u> 70	-	1.0	-	Sustained
	294	Crosslinked Polymethacrylic	-COO	K+	< 0.15	<u><</u> 10	-	-	-	Tablet disir of Polacrili
	404	Styrene DVB	-SO3_	Ca++	< 0.15	<u><</u> 8	-	-	-	Treatment
	414	Crosslinked Polyacrylic	-COO	K+	< 0.15	<u><</u> 10	-	-	-	As super-d calcium pe
	454	Styrene DVB	$-N^+ R_3$	CI-	>0.075 - 45% <0.15 - 1%	<u><</u> 12	-	1.8 – 2.2**	-	Cholestyra levels. Tast active ingr
	464	Crosslinked Polymethacrylic	- COO ⁻	H+	< 0.15	<u><</u> 5	-	10.0*	-	Nicotine to

* meq/dry g

** sodium glycocholate exchange capacity

Applications

asking of bitter drugs such as Norfloxacin, Ofloxacin, mycin, Dicyclomin Hydrochloride, Famotidine etc.

asking of bitter drugs such as Azithromycin etc.

ed release agent in drug formulations.

asking of bitter drugs such as Ciprofloxacin, uin Phosphate etc. as well as tablet disintegration.

asking of bitter drugs as well as tablet disintegration.

ed release agent in drug formulations.

ed release agent in drug formulations.

ition of Vitamin B_{12.}

ed release agent in drug formulations.

isintegrant/taste masking. Product meets specifications rilin Potassium, USP .

nt of hyperkalaemia.

r-disintegrant in mouth disperse tablets, iron & pellets etc.

yramine resin – used for lowering serum cholesterol aste masking, drug stabilization, controlled release & ngredient.

taste masking.

SPL : Speciality

INDION[°] Ion Exchange Resins Properties and Applications - Summarised Data

for enquiries please contact SGAQUA at info@sgaqua.co.uk

	Resin Type	INDION Designation	Matrix Type	Functional Group	Standard Ionic Form	Particle Size mm	Moisture Content %	Maximum Operating Temperature °C	Total Exchange Capacity meq/ml		
6		Adsorben	t Grade Resin	S							
	CDI	PA 500	Styrene DVB	-	-	0.3 – 0.85	63 – 67	250	-	-	High surfaces
	SPL	PA 800	Styrene DVB	-	-	0.3 – 1.2	54 – 60	250	-	-	High surfaces
		Biodiesel Manu	facture & Purif	fication							
		190	Styrene DVB	-SO3_	H+	0.42 – 1.2	<1	150	4.7*	-	Esterificatio
	SPL	BF 100	Styrene DVB	$-N^+ R_3$	OH-	0.3 – 1.2	63 – 75	-	0.9	-	Purification 0.5 - 1.0%
		BF 170	Styrene DVB	Acidic	-	0.3 – 1.2	<u><</u> 3	-	-	-	Purification soap, mois
* meq/c	dry g	•	•		•	•	•	,	•	East many inf	

For more information visit us at : http://www.ionresins.com

We offer several other speciality resins for a wide variety of applications. These include fine mesh resins for chromatographic separations; dessicant grade resins for moisture removal from sovlents & resins for peptide synthesis.

Applications

face area polymers for recovering non-polar ces from aqueous and non aqueous streams. face area polymers for recovering non-polar es from aqueous and non aqueous streams.

ation of FFA.

ion of raw bio-diesel to remove residual FFA from 0% to less than 0.1%.

ion of raw bio-diesel for removal of glycerine, oisture etc.

SPL : Speciality

Packaging for INDID	Resins			
Moist Resins	5	Dry Resins		
HDPE liner bags	25 / 50 lts	Dry Beads		
LDPE liner bags	0.5 cft / 1 cft / 25 lts	HDPE carbouys with		
Super sack	1000 lts / 35 cft	inner double plastic liner bags	25 / 50 kgs	
MS drums with liner bags	180 lts			
Fibre drums with her liner bags	7 cft	Dry Powders		
PVC Jars with liner bags	5 / 6 lts	HDPE carbouys with		
HDPE drums with liner bags	50 / 100 / 180 lts	inner double plastic liner bags	6 / 20 / 40 kgs	

Protection of Ion Exchange Resins during Storage

Ion Exchange resins, supplied in dry or moist condition, require proper care at all times. Always keep the resins drums/bags closed and in the shade at a temprature between 10°C and 40°C.

Moist Resins: Resins which are supplied in moist condition must never be allowed to dry. Regularly open the drums/bags and check the condition of the resins. If the resin is not moist enough, add demineralised water to keep it in completely moist condition. Dry Resins: Resins which are supplied as dry beads or dry powders should never be allowed to come in contact with moisture.

Measurement

Moist Resins: All water treatment resins and resins supplied in moist condition are generally sold on volume basis. The volume is measured in a column after backwashing, settling and draining of water to the bed surface. Dry Resins: All dry resins are sold on weight basis.

Warning

Strong oxidising agents such as nitric acid, degrade ion exchange resins to a considerable extent. This may result in an explosive reaction. Thus, before using strong oxidising agents, consult sources knowledgeable in the handling of such material.

To the best of our knowledge the information contained in this publication is accurate. Ion Exchange (India) Ltd. maintains a policy of continuous development and reserves the right to amend the information given herein without notice. Please contact our regional / branch offices for current product specifications.

INDION is the registered trademark of Ion Exchange (India) Ltd.

for enquiries please contact SGAQUA at

info@sgaqua.co.uk

ION EXCHANGE INDIA LTD.

Corporate Office

Ion House, Dr. E. Moses Road, Mahalaxmi, Mumbai 400 011 Tel: +91 22 3989 0909 Fax: +91 22 2493 8737 E-mail: ieil@ionexchange.co.in

International Division

R-14, T.T.C MIDC, Thane - Belapur Road, Rabale, Navi Mumbai 400 701 Tel: +91 22 3989 0909 / 3913 2400 Fax: +91 22 2769 7918 E-mail: rabcrointl@ionexchange.co.in export.sales@ionexchange.co.in

Authorised distributors for UK and EU

SG AQUA Services & Technologies Ltd 56 Redding Grove, Crownhill, Milton Keynes MK8 0BG, Buckinghamshire, United Kingdom Phone /Fax : +44 1908 98 98 79 Email : info@sgaqua.co.uk Website: www.sgaqua.co.uk

OFFICES

Regional	Telephone	Fax	E-mail				
Chennai	+91 44 3989 0909 / 3910 2900	+91 44 2815 3361	checro@ionexchange.co.in				
Delhi	+91 11 3989 0909 / 3054 3200	+91 11 2577 4837	delcro@ionexchange.co.in				
Kolkata	+91 33 3989 0909 / 3043 3400	+91 33 2400 4345	calcro@ionexchange.co.in				
Vashi	+91 22 3989 0909 / 3913 2300	+91 22 2788 9839	mumcro@ionexchange.co.in				
Branch							
Bengaluru	+91 80 2204 2888		bngcro@ionexchange.co.in				
Bhubaneswar	+91 674 326 9525 / 257 1491		bbsr@ionexchange.co.in				
Chandigarh	+91 172 274 5011	+91 172 274 4594	delcro@ionexchange.co.in				
Hyderabad	+91 40 3066 3101 / 02 / 03	+91 40 3066 3104	hydcro@ionexchange.co.in				
Lucknow	+91 522 301 3401/02	+91 522 301 3401	luk.general@ionexchange.co.in				
Vadodara	+91 265 302 7489 / 90	+91 265 239 8508	brdcro@ionexchange.co.in				
Visakhapatnam	+91 891 324 6253		sales.vizag@ionexchange.co.in				
Factories: Ankleshwa	Factories: Ankleshwar Hosur Patancheru Rabale Verna All India Service and Dealer Network						

R031-IND - 07131K